Housing prices
In [ ]:
Copied!
# %pip install "leafmap[maplibre]"
# %pip install "leafmap[maplibre]"
In [ ]:
Copied!
import geopandas as gpd
import leafmap.maplibregl as leafmap
import geopandas as gpd
import leafmap.maplibregl as leafmap
In [ ]:
Copied!
geojson = "https://github.com/opengeos/datasets/releases/download/us/zillow_home_value_by_county.geojson"
geojson = "https://github.com/opengeos/datasets/releases/download/us/zillow_home_value_by_county.geojson"
In [ ]:
Copied!
gdf = gpd.read_file(geojson)
gdf.head()
gdf = gpd.read_file(geojson)
gdf.head()
In [ ]:
Copied!
column = "2024-10-31"
data = gdf[["RegionName", "State", column, "geometry"]]
data.head()
column = "2024-10-31"
data = gdf[["RegionName", "State", column, "geometry"]]
data.head()
Available classification schemes:
- BoxPlot
- EqualInterval
- FisherJenks
- FisherJenksSampled
- HeadTailBreaks
- JenksCaspall
- JenksCaspallForced
- JenksCaspallSampled
- MaxP
- MaximumBreaks
- NaturalBreaks
- Quantiles
- Percentiles
- StdMean
- UserDefined
In [ ]:
Copied!
m = leafmap.Map(style="liberty", pitch=60)
first_symbol_id = m.find_first_symbol_layer()["id"]
m.add_data(
data,
column=column,
scheme="Quantiles",
cmap="Blues",
legend_title="Median Home Value",
name="Home value",
before_id=first_symbol_id,
extrude=True,
scale_factor=3,
)
m.add_layer_control()
m
m = leafmap.Map(style="liberty", pitch=60)
first_symbol_id = m.find_first_symbol_layer()["id"]
m.add_data(
data,
column=column,
scheme="Quantiles",
cmap="Blues",
legend_title="Median Home Value",
name="Home value",
before_id=first_symbol_id,
extrude=True,
scale_factor=3,
)
m.add_layer_control()
m
In [ ]:
Copied!
m = leafmap.Map(style="liberty")
m.add_data(
data,
column=column,
scheme="Quantiles",
cmap="Blues",
legend_title="Median Home Value",
name="Home value",
before_id=first_symbol_id,
)
m.add_layer_control()
m
m = leafmap.Map(style="liberty")
m.add_data(
data,
column=column,
scheme="Quantiles",
cmap="Blues",
legend_title="Median Home Value",
name="Home value",
before_id=first_symbol_id,
)
m.add_layer_control()
m