osm module¶
The module contains functions for downloading OpenStreetMap data. It wraps the geometries module of the osmnx package (see https://osmnx.readthedocs.io/en/stable/osmnx.html#module-osmnx.geometries). Credits to Geoff Boeing, the developer of the osmnx package. Most functions for downloading OpenStreetMap data require tags of map features. The list of commonly used tags can be found at https://wiki.openstreetmap.org/wiki/Map_features
osm_gdf_from_address(address, tags, dist=1000)
¶
Create GeoDataFrame of OSM entities within some distance N, S, E, W of address.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
address
|
str
|
The address to geocode and use as the central point around which to get the geometries. |
required |
tags
|
dict
|
Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. |
required |
dist
|
int
|
Distance in meters. Defaults to 1000. |
1000
|
Returns:
| Name | Type | Description |
|---|---|---|
GeoDataFrame |
GeoDataFrame
|
A GeoDataFrame of OSM entities. |
Source code in leafmap/osm.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | |
osm_gdf_from_bbox(north, south, east, west, tags)
¶
Create a GeoDataFrame of OSM entities within a N, S, E, W bounding box.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
north
|
float
|
Northern latitude of bounding box. |
required |
south
|
float
|
Southern latitude of bounding box. |
required |
east
|
float
|
Eastern longitude of bounding box. |
required |
west
|
float
|
Western longitude of bounding box. |
required |
tags
|
dict
|
Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
GeoDataFrame |
GeoDataFrame
|
A GeoDataFrame of OSM entities. |
Source code in leafmap/osm.py
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 | |
osm_gdf_from_geocode(query, which_result=None, by_osmid=False, buffer_dist=None)
¶
Retrieves place(s) by name or ID from the Nominatim API as a GeoDataFrame.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query
|
str | dict | list
|
Query string(s) or structured dict(s) to geocode. |
required |
which_result
|
INT
|
Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None. |
None
|
by_osmid
|
bool
|
If True, handle query as an OSM ID for lookup rather than text search. Defaults to False. |
False
|
buffer_dist
|
float
|
Distance to buffer around the place geometry, in meters. Defaults to None. |
None
|
Returns:
| Name | Type | Description |
|---|---|---|
GeoDataFrame |
GeoDataFrame
|
A GeoPandas GeoDataFrame. |
Source code in leafmap/osm.py
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 | |
osm_gdf_from_place(query, tags, which_result=None, buffer_dist=None)
¶
Create GeoDataFrame of OSM entities within boundaries of geocodable place(s).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query
|
str | dict | list
|
Query string(s) or structured dict(s) to geocode. |
required |
tags
|
dict
|
Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. |
required |
which_result
|
int
|
Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None. |
None
|
buffer_dist
|
float
|
Distance to buffer around the place geometry, in meters. Defaults to None. |
None
|
Returns:
| Name | Type | Description |
|---|---|---|
GeoDataFrame |
GeoDataFrame
|
A GeoDataFrame of OSM entities. |
Source code in leafmap/osm.py
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 | |
osm_gdf_from_point(center_point, tags, dist=1000)
¶
Create GeoDataFrame of OSM entities within some distance N, S, E, W of a point.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
center_point
|
tuple
|
The (lat, lng) center point around which to get the geometries. |
required |
tags
|
dict
|
Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. |
required |
dist
|
int
|
Distance in meters. Defaults to 1000. |
1000
|
Returns:
| Name | Type | Description |
|---|---|---|
GeoDataFrame |
GeoDataFrame
|
A GeoDataFrame of OSM entities. |
Source code in leafmap/osm.py
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 | |
osm_gdf_from_polygon(polygon, tags)
¶
Create GeoDataFrame of OSM entities within boundaries of a (multi)polygon.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
polygon
|
Polygon | MultiPolygon
|
Geographic boundaries to fetch geometries within |
required |
tags
|
dict
|
Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
GeoDataFrame |
GeoDataFrame
|
A GeoDataFrame of OSM entities. |
Source code in leafmap/osm.py
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 | |
osm_gdf_from_xml(filepath, polygon=None, tags=None)
¶
Create a GeoDataFrame of OSM entities in an OSM-formatted XML file.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
filepath
|
str
|
File path to file containing OSM XML data |
required |
polygon
|
Polygon
|
Optional geographic boundary to filter objects. Defaults to None. |
None
|
tags
|
dict
|
Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. |
None
|
Returns:
| Name | Type | Description |
|---|---|---|
GeoDataFrame |
GeoDataFrame
|
A GeoDataFrame of OSM entities. |
Source code in leafmap/osm.py
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 | |
osm_geojson_from_address(address, tags, filepath=None, dist=1000)
¶
Download OSM entities within some distance N, S, E, W of address as a GeoJSON.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
address
|
str
|
The address to geocode and use as the central point around which to get the geometries. |
required |
tags
|
dict
|
Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. |
required |
filepath
|
str
|
File path to the output GeoJSON. Defaults to None. |
None
|
dist
|
int
|
Distance in meters. Defaults to 1000. |
1000
|
Returns:
| Name | Type | Description |
|---|---|---|
dict |
Dict
|
A GeoJSON dictionary of OSM entities. |
Source code in leafmap/osm.py
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | |
osm_geojson_from_bbox(north, south, east, west, tags, filepath=None)
¶
Download OSM entities within a N, S, E, W bounding box as a GeoJSON.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
north
|
float
|
Northern latitude of bounding box. |
required |
south
|
float
|
Southern latitude of bounding box. |
required |
east
|
float
|
Eastern longitude of bounding box. |
required |
west
|
float
|
Western longitude of bounding box. |
required |
tags
|
dict
|
Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. |
required |
filepath
|
str
|
File path to the output GeoJSON. |
None
|
Returns:
| Name | Type | Description |
|---|---|---|
dict |
A GeoJSON dictionary of OSM entities. |
Source code in leafmap/osm.py
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 | |
osm_geojson_from_geocode(query, filepath, which_result=None, by_osmid=False, buffer_dist=None)
¶
Download place(s) by name or ID from the Nominatim API as a GeoJSON.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query
|
str | dict | list
|
Query string(s) or structured dict(s) to geocode. |
required |
filepath
|
str
|
File path to the output GeoJSON. |
required |
which_result
|
int
|
Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None. |
None
|
by_osmid
|
bool
|
If True, handle query as an OSM ID for lookup rather than text search. Defaults to False. |
False
|
buffer_dist
|
float
|
Distance to buffer around the place geometry, in meters. Defaults to None. |
None
|
Returns:
| Name | Type | Description |
|---|---|---|
dict |
A GeoJSON dictionary of OSM entities. |
Source code in leafmap/osm.py
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 | |
osm_geojson_from_place(query, tags, filepath, which_result=None, buffer_dist=None)
¶
Download OSM entities within boundaries of geocodable place(s) as a GeoJSON.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query
|
str | dict | list
|
Query string(s) or structured dict(s) to geocode. |
required |
tags
|
dict
|
Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. |
required |
filepath
|
str
|
File path to the output shapefile. |
required |
which_result
|
int
|
Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None. |
None
|
buffer_dist
|
float
|
Distance to buffer around the place geometry, in meters. Defaults to None. |
None
|
Returns:
| Name | Type | Description |
|---|---|---|
dict |
Dict
|
A GeoJSON dictionary of OSM entities. |
Source code in leafmap/osm.py
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 | |
osm_geojson_from_point(center_point, tags, filepath, dist=1000)
¶
Download OSM entities within some distance N, S, E, W of point as a GeoJSON.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
center_point
|
tuple
|
The (lat, lng) center point around which to get the geometries. |
required |
tags
|
dict
|
Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. |
required |
filepath
|
str
|
File path to the output shapefile. |
required |
dist
|
int
|
Distance in meters. Defaults to 1000. |
1000
|
Returns:
| Name | Type | Description |
|---|---|---|
dict |
Dict
|
A GeoJSON dictionary of OSM entities. |
Source code in leafmap/osm.py
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 | |
osm_geojson_from_polygon(polygon, tags, filepath=None)
¶
Download OSM entities within boundaries of a (multi)polygon as a GeoJSON.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
polygon
|
Polygon | MultiPolygon
|
Geographic boundaries to fetch geometries within |
required |
tags
|
dict
|
Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. |
required |
filepath
|
str
|
File path to the output GeoJSON. |
None
|
Returns:
| Name | Type | Description |
|---|---|---|
dict |
Dict
|
A GeoJSON dictionary of OSM entities. |
Source code in leafmap/osm.py
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 | |
osm_shp_from_address(address, tags, filepath, dist=1000)
¶
Download OSM entities within some distance N, S, E, W of address as a shapefile.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
address
|
str
|
The address to geocode and use as the central point around which to get the geometries. |
required |
tags
|
dict
|
Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. |
required |
filepath
|
str
|
File path to the output shapefile. |
required |
dist
|
int
|
Distance in meters. Defaults to 1000. |
1000
|
Source code in leafmap/osm.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 | |
osm_shp_from_bbox(north, south, east, west, tags, filepath)
¶
Download OSM entities within a N, S, E, W bounding box as a shapefile.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
north
|
float
|
Northern latitude of bounding box. |
required |
south
|
float
|
Southern latitude of bounding box. |
required |
east
|
float
|
Eastern longitude of bounding box. |
required |
west
|
float
|
Western longitude of bounding box. |
required |
tags
|
dict
|
Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. |
required |
filepath
|
str
|
File path to the output shapefile. |
required |
Source code in leafmap/osm.py
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 | |
osm_shp_from_geocode(query, filepath, which_result=None, by_osmid=False, buffer_dist=None)
¶
Download place(s) by name or ID from the Nominatim API as a shapefile.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query
|
str | dict | list
|
Query string(s) or structured dict(s) to geocode. |
required |
filepath
|
str
|
File path to the output shapefile. |
required |
which_result
|
int
|
Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None. |
None
|
by_osmid
|
bool
|
If True, handle query as an OSM ID for lookup rather than text search. Defaults to False. |
False
|
buffer_dist
|
float
|
Distance to buffer around the place geometry, in meters. Defaults to None. |
None
|
Source code in leafmap/osm.py
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 | |
osm_shp_from_place(query, tags, filepath, which_result=None, buffer_dist=None)
¶
Download OSM entities within boundaries of geocodable place(s) as a shapefile.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query
|
str | dict | list
|
Query string(s) or structured dict(s) to geocode. |
required |
tags
|
dict
|
Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. |
required |
filepath
|
str
|
File path to the output shapefile. |
required |
which_result
|
int
|
Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None. |
None
|
buffer_dist
|
float
|
Distance to buffer around the place geometry, in meters. Defaults to None. |
None
|
Source code in leafmap/osm.py
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 | |
osm_shp_from_point(center_point, tags, filepath, dist=1000)
¶
Download OSM entities within some distance N, S, E, W of point as a shapefile.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
center_point
|
tuple
|
The (lat, lng) center point around which to get the geometries. |
required |
tags
|
dict
|
Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. |
required |
filepath
|
str
|
File path to the output shapefile. |
required |
dist
|
int
|
Distance in meters. Defaults to 1000. |
1000
|
Source code in leafmap/osm.py
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 | |
osm_shp_from_polygon(polygon, tags, filepath)
¶
Download OSM entities within boundaries of a (multi)polygon as a shapefile.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
polygon
|
Polygon | MultiPolygon
|
Geographic boundaries to fetch geometries within |
required |
tags
|
dict
|
Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. |
required |
filepath
|
str
|
File path to the output shapefile. |
required |
Source code in leafmap/osm.py
248 249 250 251 252 253 254 255 256 257 | |
osm_tags_list()
¶
Open a browser to see all tags of OSM features.
Source code in leafmap/osm.py
451 452 453 454 455 | |
quackosm_gdf_from_bbox(bbox, tags=None, verbosity_mode='transient', **kwargs)
¶
Download OSM data for a bounding box using QuackOSM.
QuackOSM is a high-performance library for reading OpenStreetMap data using DuckDB. It automatically downloads the required PBF files and converts them to GeoDataFrame.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
bbox
|
tuple or list
|
Bounding box as (west, south, east, north) or (minx, miny, maxx, maxy) in WGS84 coordinates. |
required |
tags
|
dict
|
Dict of tags used for filtering OSM features. The dict keys should be OSM tags (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. Defaults to None (all features). |
None
|
verbosity_mode
|
str
|
Verbosity mode for progress output. Options are "verbose", "transient", or "silent". Defaults to "transient". |
'transient'
|
**kwargs
|
Additional keyword arguments passed to QuackOSM's convert_geometry_to_geodataframe. |
{}
|
Returns:
| Name | Type | Description |
|---|---|---|
GeoDataFrame |
GeoDataFrame
|
A GeoDataFrame containing OSM features with 'tags' and 'geometry' columns. |
Example
import leafmap.osm as osm
Download all OSM features in a bounding box (Monaco)¶
bbox = (7.409, 43.724, 7.439, 43.752) # west, south, east, north gdf = osm.quackosm_gdf_from_bbox(bbox)
Download only roads¶
gdf = osm.quackosm_gdf_from_bbox(bbox, tags={"highway": True})
Source code in leafmap/osm.py
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 | |
quackosm_gdf_from_geometry(geometry, tags=None, verbosity_mode='transient', **kwargs)
¶
Download OSM data for a geometry using QuackOSM.
QuackOSM is a high-performance library for reading OpenStreetMap data using DuckDB. It automatically downloads the required PBF files and converts them to GeoDataFrame.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
geometry
|
A Shapely geometry (Polygon, MultiPolygon), WKT string, GeoJSON dict, or a GeoDataFrame. The geometry defines the area of interest. |
required | |
tags
|
dict
|
Dict of tags used for filtering OSM features. The dict keys should be OSM tags (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. Defaults to None (all features). |
None
|
verbosity_mode
|
str
|
Verbosity mode for progress output. Options are "verbose", "transient", or "silent". Defaults to "transient". |
'transient'
|
**kwargs
|
Additional keyword arguments passed to QuackOSM's convert_geometry_to_geodataframe. |
{}
|
Returns:
| Name | Type | Description |
|---|---|---|
GeoDataFrame |
GeoDataFrame
|
A GeoDataFrame containing OSM features with 'tags' and 'geometry' columns. |
Example
import leafmap.osm as osm from shapely.geometry import box
Download OSM features for a custom geometry¶
geometry = box(7.41, 43.73, 7.43, 43.75) # Monaco area gdf = osm.quackosm_gdf_from_geometry(geometry)
Download only water features¶
gdf = osm.quackosm_gdf_from_geometry(geometry, tags={"natural": "water"})
Source code in leafmap/osm.py
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 | |
quackosm_gdf_from_pbf(pbf_path, tags=None, geometry=None, verbosity_mode='transient', **kwargs)
¶
Load OSM data from a local PBF file using QuackOSM.
QuackOSM is a high-performance library for reading OpenStreetMap data using DuckDB. This function reads a local PBF file and converts it to a GeoDataFrame.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
pbf_path
|
str
|
Path to the local PBF file. |
required |
tags
|
dict
|
Dict of tags used for filtering OSM features. The dict keys should be OSM tags (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. Defaults to None (all features). |
None
|
geometry
|
Optional Shapely geometry to clip the data to. Defaults to None. |
None
|
|
verbosity_mode
|
str
|
Verbosity mode for progress output. Options are "verbose", "transient", or "silent". Defaults to "transient". |
'transient'
|
**kwargs
|
Additional keyword arguments passed to QuackOSM's convert_pbf_to_geodataframe. |
{}
|
Returns:
| Name | Type | Description |
|---|---|---|
GeoDataFrame |
GeoDataFrame
|
A GeoDataFrame containing OSM features with 'tags' and 'geometry' columns. |
Example
import leafmap.osm as osm
Load OSM data from a PBF file¶
gdf = osm.quackosm_gdf_from_pbf("monaco.osm.pbf")
Load only buildings¶
gdf = osm.quackosm_gdf_from_pbf("monaco.osm.pbf", tags={"building": True})
Source code in leafmap/osm.py
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 | |
quackosm_gdf_from_place(query, tags=None, osm_extract_source=None, verbosity_mode='transient', **kwargs)
¶
Download OSM data for a place name using QuackOSM.
QuackOSM is a high-performance library for reading OpenStreetMap data using DuckDB. It automatically downloads the required PBF files and converts them to GeoDataFrame.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query
|
str
|
Place name to geocode (e.g., "Vatican City", "Monaco", "Manhattan, New York"). |
required |
tags
|
dict
|
Dict of tags used for filtering OSM features. The dict keys should be OSM tags (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {'building': True} would return all building footprints in the area. tags = {'amenity': True, 'highway': 'bus_stop'} would return all amenities and highway=bus_stop features. Defaults to None (all features). |
None
|
osm_extract_source
|
str
|
Source for OSM extracts. Options include "geofabrik", "osmfr", "bbbike", etc. If None, QuackOSM will automatically select the best source. Defaults to None. |
None
|
verbosity_mode
|
str
|
Verbosity mode for progress output. Options are "verbose", "transient", or "silent". Defaults to "transient". |
'transient'
|
**kwargs
|
Additional keyword arguments passed to QuackOSM's convert_osm_extract_to_geodataframe or convert_geometry_to_geodataframe functions. |
{}
|
Returns:
| Name | Type | Description |
|---|---|---|
GeoDataFrame |
GeoDataFrame
|
A GeoDataFrame containing OSM features with 'tags' and 'geometry' columns. |
Example
import leafmap.osm as osm
Download all OSM features for Monaco¶
gdf = osm.quackosm_gdf_from_place("Monaco")
Download only buildings¶
gdf = osm.quackosm_gdf_from_place("Monaco", tags={"building": True})
Download amenities and shops¶
gdf = osm.quackosm_gdf_from_place("Monaco", tags={"amenity": True, "shop": True})
Source code in leafmap/osm.py
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 | |
quackosm_to_parquet(source, output_path, tags=None, verbosity_mode='transient', **kwargs)
¶
Download OSM data and save to GeoParquet format using QuackOSM.
QuackOSM can efficiently save OSM data directly to GeoParquet format, which is optimized for cloud storage and analytical workflows.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
source
|
Union[str, Tuple, GeoDataFrame]
|
The data source. Can be: - A place name string (e.g., "Monaco") - A bounding box tuple (west, south, east, north) - A Shapely geometry - A GeoDataFrame |
required |
output_path
|
str
|
Path to save the output GeoParquet file. |
required |
tags
|
dict
|
Dict of tags used for filtering OSM features. Defaults to None. |
None
|
verbosity_mode
|
str
|
Verbosity mode for progress output. Defaults to "transient". |
'transient'
|
**kwargs
|
Additional keyword arguments passed to QuackOSM functions. |
{}
|
Returns:
| Name | Type | Description |
|---|---|---|
str |
str
|
Path to the saved GeoParquet file. |
Example
import leafmap.osm as osm
Save Monaco buildings to GeoParquet¶
path = osm.quackosm_to_parquet("Monaco", "monaco_buildings.parquet", tags={"building": True})
Source code in leafmap/osm.py
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 | |